Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
Добавить фильтры

база данных
Год
Годовой диапазон
1.
Commun Med (Lond) ; 2(1): 152, 2022 Nov 26.
Статья в английский | MEDLINE | ID: covidwho-2133665

Реферат

BACKGROUND: SARS-CoV-2 Omicron variants are highly resistant to vaccine-induced immunity and human monoclonal antibodies. METHODS: We previously reported that two nanobodies, P17 and P86, potently neutralize SARS-CoV-2 VOCs. In this study, we modified these nanobodies into trimers, called TP17 and TP86 and tested their neutralization activities against Omicron BA.1 and subvariant BA.2 using pseudovirus assays. Next, we used TP17 and TP86 nanobody cocktail to treat ACE2 transgenic mice infected with lethal dose of SARS-CoV-2 strains, original, Delta and Omicron BA.1. RESULTS: Here, we demonstrate that a novel nanobody TP86 potently neutralizes both BA.1 and BA.2 Omicron variants, and that the TP17 and TP86 nanobody cocktail broadly neutralizes in vitro all VOCs as well as original strain. Furthermore, intratracheal administration of this nanobody cocktail suppresses weight loss and prolongs survival of human ACE2 transgenic mice infected with SARS-CoV-2 strains, original, Delta and Omicron BA.1. CONCLUSIONS: Intratracheal trimerized nanobody cocktail administration suppresses weight loss and prolongs survival of SARS-CoV-2 infected mice.


Antibodies are made by the immune system to identify and inactivate infectious agents such as viruses. Alpacas produce a simple type of antibodies called nanobodies. We previously developed two nanobodies named P17 and P86 that inactivate SARS-CoV-2. In this study, we modified these nanobodies to create two nanobodies named TP17 and TP86. The cocktail of these nanobodies inactivated different types of SARS-CoV-2 viruses including Omicron BA.1 and BA.2. The cocktail also prolonged survival of mice infected with lethal doses of SARS-CoV-2.

2.
Cell Host Microbe ; 30(11): 1540-1555.e15, 2022 11 09.
Статья в английский | MEDLINE | ID: covidwho-2130372

Реферат

The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency, but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
3.
iScience ; 25(12): 105720, 2022 Dec 22.
Статья в английский | MEDLINE | ID: covidwho-2131227

Реферат

Recent studies have revealed the unique virological characteristics of Omicron, particularly those of its spike protein, such as less cleavage efficacy in cells, reduced ACE2 binding affinity, and poor fusogenicity. However, it remains unclear which mutation(s) determine these three virological characteristics of Omicron spike. Here, we show that these characteristics of the Omicron spike protein are determined by its receptor-binding domain. Of interest, molecular phylogenetic analysis revealed that acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidated that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue of another protomer in the spike trimer, conferring the attenuated cleavage efficiency and fusogenicity of Omicron spike. Our data shed light on the evolutionary events underlying the emergence of Omicron at the molecular level.

4.
Cell host & microbe ; 2022.
Статья в английский | EuropePMC | ID: covidwho-2073701

Реферат

The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5. Graphical Saito and G2P-Japan Consortium et al. elucidate the virological properties of SARS-CoV-2 Omicron BA.2.75 variant. BA.2.75 is more transmissible than BA.5, and exhibits different antigenicity than BA.2 and BA.5. The BA.2.75 spike exhibits higher affinity to ACE2 and higher fusogenicity, and BA.2.75 is more pathogenic than BA.2 in hamsters.

5.
Commun Biol ; 5(1): 669, 2022 07 06.
Статья в английский | MEDLINE | ID: covidwho-1921727

Реферат

We are amid the historic coronavirus infectious disease 2019 (COVID-19) pandemic. Imbalances in the accessibility of vaccines, medicines, and diagnostics among countries, regions, and populations, and those in war crises, have been problematic. Nanobodies are small, stable, customizable, and inexpensive to produce. Herein, we present a panel of nanobodies that can detect the spike proteins of five SARS-CoV-2 variants of concern (VOCs) including Omicron. Here we show via ELISA, lateral flow, kinetic, flow cytometric, microscopy, and Western blotting assays that our nanobodies can quantify the spike variants. This panel of nanobodies broadly neutralizes viral infection caused by pseudotyped and authentic SARS-CoV-2 VOCs. Structural analyses show that the P86 clone targets epitopes that are conserved yet unclassified on the receptor-binding domain (RBD) and contacts the N-terminal domain (NTD). Human antibodies rarely access both regions; consequently, the clone buries hidden crevasses of SARS-CoV-2 spike proteins that go undetected by conventional antibodies.


Тема - темы
COVID-19 , Single-Domain Antibodies , Antibodies, Viral , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism
6.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Статья в английский | MEDLINE | ID: covidwho-1814233

Реферат

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Тема - темы
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/virology , Cricetinae , Epithelial Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
Критерии поиска